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TOWARDS A GEOMETRY OF INTERACTION
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Abstract : the paper presents a program for proof-theory, inspired by Its
growing connections with computer science ; what follows can therefore be seen
8s an updating of the -now classical- paradigms of HBilbert and Brouwer. Such an
illustrious company Is a bit daunting, and requires at least some evidence for
the program : such evidence is based on the author’s recent work on linear logic
[7] and on further developments, e.g. [81, [91. In two words, we start from the
idea that both Hilbert and Brouwer have still something to say (and not as
antagonistic things as one could expect) provided one reacts agalnst the
reductionism of the former, and the subjectivism of the latter. The program is
essentially about the development of a logic of actioms, 1.e. of non-reusable
facts (Ve}—sus situations) : we will accept the intuitionistic dogma that the
meaning of a formula is in a proof of it (and not in Its tr_-uth]. Thé
intuitionistic tradition understands proofs as subjectivistic entities, and
develops an ideology of intensionality, which is often nothing more than an
alibi for tazonomy, whereas one may reasonably advocate that proofs are the
written trace of underlying geometrical structures. From formalism we shall keep
the dogma of finitism, which was pushed to absurdity by Hilbert because he aimed
at an absolute elimination of Infinity : we now know that his proposed task, as
carried out by Gentzen, involves a finite dynamics whose eventual behaviour Is
so unpredictible that only the reintroduction of infinite tools -more or less
equivalent to the one under elimination- can master it. What must be kept of
finitism is the idea of replacement of static infinite slituations by finite
dynamic actions ; this finite dynamics should lie in the geometrical structure
of Gentzen’s Hauptsatz which precisely eliminates the use of infinity in proofs.
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70 JEAN-YVES GIRARD

I. basic logical commitments

Before discussing the logical problems that will lead us to a drastic
reformulation of logic, let us explain why such essential points have been
overlooked by the whole logic tradition (including the author himself, who first
found linear logic as a technical decomposition of intuitionistic logic, and
only later on reconstructed a kind of commonplace justification for it). The
reason has to be searched for in the obsession of Grundlagen, i.e. the furious
reductionism under Hilbert’s flag : since it was possible to reduce the formal
core of any scientific activity to mathematics, it has been assumed that it was
enough to analyze mathematics. Surely -~in the spirit the Jivaro ideology- a
reduction of mathematics would have induced a reduction of the formal core of
other sciences. But reductionism in mathematics failed, and the reduction of
-say the formal core of physics— to mathematics is simply a lemma in view of a
wrong theorem. In fact, this reduction was a very awkward one, not taking care
of the fact that the meaning of implication in real life or physical sciences
has nothing to do with its familiar mathematical meaning : it is only through
very heavy and ad hoc paraphrases that real implication may be put into
mathematics (usually the paraphrase is done by adding a parameter for an
extraneous time). The logical laws extracted from mathematics are only adapted
to eternal truths ; the same principles applied in real life, easily lead to
absurdity, because of the interactive (causal) nature of real implication.

I.1. platonism

One usually calls platonism the naive ideclogy shared by mathematicians

about their field :

there I1s an external (ideal) world formulas are about.

The name "platonism"” is a bit unfair to Plato who was not so simple-minded.
Anyway, with this external stable infinite world, statements are true or false
(independently of our ability to check them), and this justifies principles like

tertium non datur : AV -~A
which is the core of classical logic, of universal use. Even if there is a lot
of criticism to address to this logic, it is still our ultimate mathematical
reference : even the most rabid constructivist must acknowledge that. The main
problem with platonism is that it leaves no room for the very heart of
mathematics, namely proofs. If 'reality" is prior to anything else, proofs
should be seen as a subjective process of understanding the real world. This is

not a very satisfactory status, and we are lead to seek a less naive ontology
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for mathematics. The price to pay for that will be a farewell to the principles
of classical logic. Although it is not excluded that classical logic could be
compatible with the more elaborated viewpoints to be discussed below, there
seems to be serious obstacles to its "constructivization" (however, the fact
that linear logic is symmetric w.r.t. linear negation makes the situation a bit
less hopeless).

1.2. intuitionism

The intuitionist paradigm is to dump the external world to focus on proofs.
The fact that "reality" -which was anyway an abstraction— no longer finds a
satisfactory status, has been interpreted in a subjectivistic way (leading to
unbelievable nonsense, e.g. Brouwer’s “"creative subject"). But this relation of
jntuitionism with some kind of spiritualism is merely a historicai accident
remember that at the beginning of the century, there was a lot of metaphysics
sbout the actual nature of the world, matter or energy ; this was a hidden way
to be for or against religion and the same kind of opposition existed among
logicians between scientism (Hilbert) and mysticism (Brouwer). Brouwer’s
excessive ideological commitments should be interpreted as a defensive attitude
against the spirit of the times —the Absolute Triumph of Science—. Just to say
that subjectivism is far from being the only possible reading of Brouwer. One of
the greatest ideas in logic (which has not yet received the mathematical
treatment it deserves) is Heyting’'s semantics of proofs, which can be summarized

by the slogan
proofs as functions.

Typically a proof of A » B is a function mapping proofs of A into proofs
of B. This explanation has been thought of as incomplete, since there is no way
of deciding whether or not a given function maps proofs of A to proofs of B. But
let us observe that :

a definite answer to the problem of "proving that a proof is a proof" would
induce a reduction of intuitionism to a fixed formal system, which is absurd ;

the criticism to Heyting’s paradigm relies on a subjectivistic attitude : I
must recognize a_ proof when I see one of them. But, as we already mentioned,
subjectivism is not the only issue : if a proof of A is a program enjoying
specification A, we must accept the fact that, in most cases, a program will
meet a given specification, but that there will be no way of checking it.

There is a more serious objection to Heyting's paradigm, namely the word
“function". The standard acception of this term is "functional graph", while
obviously Heyting meant something else. One usually speaks of intensionality
with a clear subjective background : the function is given together with a

description, and this widely opens the door for any kind of taxonomy. At that
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point, Heyting’s semantics becomes a bubble-gum, since taxonomy allows us to
distinguish between "a" and "A", 1 + 2 and 2 + 1, or even between "A" and "A",

since they occur at different places.

I1.3. actions

Since the paradigm "function & description" is clearly deficient, we shall

propose another one :
proofs as actions.

The term action has to be understood with its familiar meaning (and not with a
specific technical one like "group action"). Our program is essentially to try
to give a precise mathematical contents to this expression. In the sequel, we
shall try to give some hints as to the solution of this problem. The main
difficulties will be :

to make a clear distinction between functions and actions

to try to get rid of taxonomy in the description of actions, i.e. to find
out what is "beyond" syntax.
The logical twist from functions to actions leads us to linear logic.

II. Linear logic : a logic of action

IT.1. actions versus situations
Classical and intuitionistic logics deal with stable truths :

If Aand A=» B, then B, but A still holds.

This is perfect in mathematics, but wrong in real life, since real implication
is causal. A causal implication cannot be iterated since the conditions are
modified after its use ; this process of modification of the premises
(conditions) is known in physics as reaction. For instance, if A is to spend $1
on a pack of cigarettes and B is to get them, you lose $1 in this process, and
you cannot do it a second time. The reaction here was that $1 went out of your
pocket. The first objection to that view is that there are in mathematics, in
real life, cases where reaction does not exist or can be neglected. Suéh cases
are situations in the sense of stable truths. Our logical refinements should not
prevent us to cope with situations, and there will be a specific kind of
connectives (exponentials, "!" and "?") which shall express the iterability of
an action, i.e. the absence of any reaction ; typically !'A means to spend as
many $’'s as one needs. If we use the symbol ~ (1inear implication) for causal
implication, a usual intuitionistic implication A » B therefore appears as

An B = (!'A)-B
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j.e. A implies B exactly when B is caused by some iteration of A. As far -as
jptuitionistic logic is concerned, the translation inside linear logic using
essentially this principle, will be faithful, so nothing will be lost ; it
remains to see what is gained.

In linear logic, two conjunctions e (times) and & (with) coexist. They
correspond to two radically different uses of the word "and". Both conjunctiohs
express the availability of two actions ; but in the case of ®, both will be
done, whereas in the case of &, only one of them will be performed (but we shall

decide which one). To understand the distinction consider A,B,C :

A to spend $1
B: " to get a pack of Camels
to get a pack of Marlboro.

An action of type A will be a way of taking $1 out of one’s pocket (there may be
several actions of this type since we own several notes). Similarly, there are
several packs of Camels at the dealer’s, hence there are several actions of
type B. An action of type A - B is a way of replacing any specific $ by a
specific pack of Camels.

Now, given an action of type A - B and amn action of type A - C, there will
be no way of forming an action of type A - B&C, since for $1 you will never get
what costs $2 (there will be an action of type A®A - BaC, namely getting two
packs for $2). However, there will be an action of type A - B&C, namely the
superposition of both actions. In order to perform this action, we have first to
choose which among the two possible actions we want to perform, and then to do
the one selected. This is an exact analogue of the computer instruction
IF...THEN...ELSE... : in this familiar case, the parts THEN... and ELSE... are
available, but only one of them will be done. A typical misconception is to view
"g" as a disjunction : this is wrong since the formulas A&B - A and ARB - B will
both be provable. By the way, there are two disjunctions in linear logic :

“g" (plus) which is the dual of "g", which expresses the choice of one
action between two possible types ; typically an action of type A -~ BaC will be
to get one pack of Marlboro for the $, another one is to get the pack of
Camels. In that case, we can no longer decide which brand of cigarettes we shall
get. In terms of computer science, the distinction &/@ is reminiscent of the
distinction outer/inner non determinism.

™g'" (par) which is the duai of "e", which expresses a dependency between
two types of actions ; the meaning of mg" jg not that easy, let us just say that
A9 B can either be read as A - B or as B+ < A, i.e. ™" is a symmetric form of

"o": if one prefers, "¢" is the constructive contents of classical disjunction.
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II.3. states and transitions

A typical consequence of the excessive focusing of logicians on mathematicg
is that the notion of state of a system has been overlooked. Let us give some
examples to which the discussion applies :

(i) the current state of a Petri net, i.e. the repartition of tokens (a
suggestion of Andrea Asperti and Carl Gunter, private communications)

(ii) the current state of a Turing machine (a suggestion of Vincent Danos,
private communication)

(iii) the current position during a chessboard game

(iv) the list of molecules present before (or after) a chemical reaction

(v) the current list of beliefs of an expert system, etc.

Observe that all these cases are modelized according to precise protocols, hence
can be formalized, so can eventually be written in mathematics but in all
cases, one will have to introduce an extraneous temporal parameter, and the
formalization will explain, in classical logic, how to pass from the state s
(modelized as (S,t)) to a new one (modelized as (S’,t+1)). This is very awkward,
and it would be preferable to ignore this ad hoc temporal parameter.

In fact, one would like to represent states by formulas, and transitions by
means of implications of states, in such a way that S’ is accessible from §
exactly when S - S’ is provable from the transitions, taken as axioms. But here
we meet the problem that, with usual logic, the phenomenon of updating cannot be
represented. For instance take the chemical equation

ZHZ + 02 > 2H20

a paraphrasis of it in current language could be
1] -3 "
'Hz and Hé and 02 imply Hzo and Hzo'.

The common sense knows how to manipulate this as a logical inference ; but this
common sense knows that the sense of "and" here is non idempotent (because the
proportions are crucial) and that once the starting state has been used to
produce the final one, it cannot be reused. The features which are needed here
are those of "®" to represent "and" and "<" to represent "imply"; a correct
representation will therefore be

H26H2002 - HZOGHZO
and it turns out that if we take chemical equations written in this way as
axioms, then the notion of linear consequence will correspond to the notion of

accessible state from an initial one. On this example we see that it is ecrucial
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that the two following rules of classical logic

A= AAA (1) AAB = A (2)

pecome wrong when = is replaced by - and A is replaced by ® (principle (1) would
say that the proportions do not matter, whereas principle (2) would ensble us to
édd an atom of carbon to the left, that would not be present on the right). The
first rule is a way of writing contraction, whereas the second rule is a way of
writing weakening.

Let us now go to an example from computer science, which essentially
simplifies what Danos did for Turing machines : take a formal gremmar, gemerated
by a finite alphabet L = {al, .o .,ak), and defined by means of transition rules

miami (i=1,...,n)
where the mi’s are words on L ; now, if we take al,...,ak as propositional atoms
we can represent any word m = a oeeBy
1 P
by means of the proposition me = 8, 0...sai
1 P
and any transition mao m
by means of the axiom me - m'*x

Then it is plain then a word m is accessible from a word oy Jjust in case

the linear implication

mo-om

is provable from the axioms. Here together with the interdiction of the

analogues of (1) and (2), a third principle from classical logic :
AAB » BAA (3)

becomes wrong if one replaces "A" by "e" and nyt by "o", (3) is a possible way
of writing exchange. In that case, we are not longer spesking oI gtandard linear
logic, but of non-commtative linear logic, which should play a prominent role
in the future, but which is still very experimental.

The example of a formal grammar shows very clearly the close. connection
between linear logic and any kind of computation process, and it is therefore no
wonder that linear logic finds natural applications in computer science. Observe
also that the meaning of the arrow of state transition systems is now exactly
the meaning of a logical implication, what it should be !

To sum up our discussion about states and transitions : the familiar notion
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of theory : classical logic + axioms, should therefore be replaced by :

theory = linear logic + axioms + current state

The axioms are there forever; but the current state is available for a single
use: hence once it has been used to prove another state, then the theory is
updated, i.e. this other state becomes the next current state.
I1.4. expert systems

Let us say something more specific about expert systems : to cope with the
inadequation of classical logic w.r.t. updating, incredible solutions have been
proposed, namely to replace theories by models. The authors of such
"ameliorations" of classical logic, e.g. the so called "default reasoning"
—that would better be called "deficient reasoning"- seem to ignore that
processes of the kind "if A cannot be proved, add -~A" have been known for more
than 50 years to be non-effective at all. By the way, even the idea of thinking
of & decision as a completion process is a nonsense : are we interested to add

"Mary is a student”
to our knowledge on the basis it is consistent ? The answer is negative, since
there maybe 300 applicants like Mary (all consistently students) but we have
limited resources, and we have to select 30 of them by means of some reasonable
criteria, money, base-ball etc. Here the real decision problem is of
quantitative nature (minimal inputs, maximal outputs) and cannot be handled by
means of classical logic or any of its "improvements". Here linear logic could
be of essential use : for reasons already explained, this logic keeps an exact
maintenance of resources ; hence, from the initial state S (representing our
resources) it could deduce several possibilities, e.g.
S - S’&s"as"™?

and it is up to us (external non-determinism) to select which among
S’, 5", and S"’ will be our next state. We can even refine the logical axioms in
such a way that the choice is directly made during the deduction process, but at
no moment we have to go to the shame of completion ! It seems that people were
led to such regressions simply because they were not able to give divergent
transition rules, e.g. S » S’ together with S o -S’, which in classical logic
entail the contradiction of S. In linear logic, one can write simultaneous
transitions S -~ S’ and S - S", with S', S" contradictory, without S becoming

contradictory (S&S becomes contradictory, but it has a meaning very far from S).

II.5. linear negation

The most important linear comnective is linear negation (-)+ (nil). Since
linear implication will eventually be rewritten as A B, "nil" is the only
negative operation of logic. Linear negation behaves 1like transposition in

linear algebra (A - B will be the same as BY - AL, at least in the commutative
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case), i.e. it expresses a duality, that is a change of standpoint :

action of type A = reaction of type A*

(other aspects of the duality action/reaction are output/input, or
answer/question). This change of standpoint is ultimately an inversion of
causality, i.e. of the sense of time, but this aspect is still very mysterious,
since it involves non-commutative linear logic, which is not yet ripe.

The main property of (=)t is that ALt can, without any problem, be
jdentified with A, like in classical logic ; but, in classical logic, the price
to pay was the loss of constructivity. In intuitionistic logic, it is well known
that --A is not equivalent with A. But it is less known that the familiar
equivalence between -A and ~~-~A is not an isomorphism w.r.t. proofs : we have
indeed maps in both directions, which form a retraction pair (like in
topological vector spaces, between a dual snd a tridual). In fact the familiar
Godel --—translation of classical logic into intuitionistic logic heavily uses
jdentifications of the form ~-A = ~-~--A, which are wrong in terms of proofs, and
this is why this translation is not enough to make classical logic constructive.

The involutive character of "nil" ensures De Morgan-like laws for all

connectives and quantifiers, e.g.
axA = (YxAt)*-

which may look surprising at first sight, especially if we keep in mind that the
existential quantifier of linear logic is effective : typically, if one proves
3xA, then one proves A[t/x] for a certain term t. This exceptional behaviour of
"nil" comes from the fact that A negates (i.e. reacts to) a single action of
type A, whereas usual negation only negates some (unspecified) iteration of. A,
what usually leads to a Herbrand disjunction of unspecified length, whereas the
jdea of linear negation is not connected to anything 1like a Herbrand
disjunction. Linear negation is therefore more primitive, but also stronger than

usual negation (i.e. more difficult to prove).

I1.6. structural rules

In 1934 Gentzen introduced sequent calculus, which is the basic synthetic
tool for studying the laws of logic. This calculus is not always convenient to
build proofs, but it is essential to study their properties. (In the same way,
Hamilton’s equations in mechanics are not very useful to solve practical
problems of motion, but they play an essential role when we want to discuss the
very principles of mechanics.) Technically speaking, Gentzen introduced

sequents, i.e. expressions I' 4, where I' (= Al""’An) and 4 (= Bl""’Bm) are
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finite sequences of formulas. The intended meaning of I' + 4 is that
A1 and ... and An imply Bl or ... or Em

but the sense of "and", "imply", "or" has to be clarified. The calculus is
divided into three groups of rules (idemtity, structural, logical), among which
the structural block has been systematically overlooked. In fact, a close
inspection shows that the actual meaning of the words "and", "imply", “or", is
wholly in the structural group : in fact it is not too excessive to say that a
logic is essentially a set of structural rules ! The three standard structural
rules are all of the form
Ir'erd

P ra , more precisely :

a) weakening opens the door for fake dependencies : in that case I'’ and 4’
are just extensions of the sequences I, 4. Typically, it speaks of causes
without effect, e.g. spending $1 to get nothing -not even smoke—; but is an
essential tool in mathematics (from B deduce A » B) since it allows us not to
use all the hypotheses in a deduction. It will rightly be rejected from linear
logic. It is to be remarked that this rule has been criticized a long time ago
by philosophers in the tradition of Lewis’s "strict implication", and has led to
various "relevance logics", which belong to the philosophical side of logic, see
[3] for instance. Technically speaking, the rule says that @ is stronger than &,
which is wrong, but not that absurd :

Ara BFr B
ABF A A":B»-B&
(1) AB - ASB

ASB - ARB

B) contraction is the fingernail of infinity in propositional calculus : it
says that what you have, you will always keep, no matter how you use it. The
rule corresponds to the case where I'' and 4' come from I' and 4 by identifying
several occurences of the same formula (on the same side of "k"). To convince
yourself that the rule is about infinity (and in fact that without it there is
no infinite at all in logic), take the formula INF : vx3y x < y (together with
others saying that < is a strict order). This axiom has only infinite models,
and we show this by exhibiting 1,2,3,4,... distinct elements ; but, if we want
to exhibit 27 distinct elements, we are actually using INF 26 times, and without
a principle saying that 26 INF can be contracted into one, we would never make
it ! Another infinitary feature of the rule is that it is the only responsible
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for undecidability : Gentzen’s subformula property yields a decision method for
predicate calculus, provided we can bound the length of the sequents involved in
a cut—-free proof, and this is obviously the case in the absence of contraction.
This fact has been observed by various people, see e.g. [13] (but there is a lot
of reported literature on this subject in Japan and Russia, which may be
anterior to the one just mentioned). In linear logic, both contraction and
weakening will be forbidden as structural rules ; but it would be nonsense not
to recover them in some way : we have introduced a new interpretation for the
basic notions of logic (actions), but we do not want to abolish the old one
(situations), and this is why special connectives (exponentials ! and ?) will be
jntroduced, with the two missing structurals as their main rules. The main
difference is that we now control in many cases the use of contraction, which,
-one should not forget it— means controlling Herbrand disjunctions.
Intuitionistic logic accepts contraction (and weakening as well), but only
to the left of sequents : this is done in a very hypocritical way, by
restricting the sequents to the case where 4 consists of one formula, so that we
are never actually in position to write a single right structural. So, when we
have a cut—free proof of k A, the Ilast rule must be logical, and this has
immediate consequences, e.g. if A is 3yB, then B[t] has been proved for some t
etc. These features, that just come from the absence of right contraction, will
therefore be present in linear logic, in spite of the presence of an involutive
negation. It is perhaps the place to have a discussion on the fuzzy expression
"constructive"; what is wrong with classical logic is not that we have tertium
non datur, since the example of linear logic (namely A % A*) shows that it can
very well be interpreted as a communication : on the whole any interpretation of
classical disjunction in terms of operations on proofs would be admissible. Such
operations are in fact defined via cut-elimination, which precisely gives the

meaning of proofs as functions. But, in the case of a cut

I' + AAd ', A\Ar &4’
FrAd AR A
I F 4,4

between a right and a left contraction, Gentzen's procedure yields two
essentially different answers, depending on which side we take as the most
important : in other terms a symmetric problem gets several asymetric answers.
This example shows why classically spesking, all proofs must be identified, that
is why classical logic is eventually about provability, and not about proofs (in
terms of categories, there is a similar remark by Joyal, see [15], pp. 65-67,
126. Hence the ultimate reason why classical logic is not constructive is not
because it uses contraction on the right, but because it uses it on both sides.
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Relevance logic accepts contraction on both sides, and removes weakening
the result of this cocktail of structural rules is very awkward since it Seems
that the good combinations are : C+W+E (classical), W+E (affine); E (linear),
nothing (linear non commutative). The awkwardness of the logic is made even
worse by the adjunction of ad hoc distributivity rules, which come from an
attempt to stick -as much as possible in the absence of weakening- to classical
logic. In terms of resources, relevantists correctly stated that the premise
must be used in a causality, but their acceptation of contraction now says that
resources may be used ad libitum : from two pieces of bread you will never go to
one without eating, but from one, you can get 1000, like in Jesus’s miracles...
The fact that they kept contraction on both sides left the problem of
constructivity untouched. In fact, if we clearly lose something with relevantism
(namely the simplicity, the elegance of classical logic), it is hard to say what
is gained since relevantism is not constructive, and just corresponds to vague
philosophical motivations. However, to be fair, relevantists were the first
people to distinguish between two conjunctions, two disjunctions, with exactly
the rules that we later wrote for ®, %, &, ®. In terms of formulation of the
rules, the distinction ®/% is already legitimate in classical logic, but has
been overlooked, since these connectives are provably equivalent (this is the
reason why the distinction is more natural in logics that do not contain
weakening and/or contraction). The fact that "e" is stronger than "&" comes from

weekening (see (I) above) ; using contraction, we get the reverse implication :

Ar A BrB

ABE A o

ARB,B F ASB

(11) ARB,ALB + ABB
ARB - ASB

This proof -available in relevance logic too- says that "&" is stronger than
"®", which is much worse than the other side of the equivalence proved by (I)
above. It makes the distinction between ® and & very tiny, and on the whole
useless. If we now look at classical logic, we see that the main meaning of "A"
and "V" as connectives is additive (A = &, V = @), whereas the meaning of
"A","V" as commas in sequents, is multiplicative (A = ®, V = ®). Classical logic
-and to a large extent relevance logic— operates a confusion between additive
and multiplicative features, and these features dislike extremely to be
confused.
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+4) exchange expresses the commutativity of multiplicatives : I'’_and 4’ are
cbtained from I and 4 by inner permutations of formulas. It is only for reasons
of expressive power that this rule is still present in the main version of
linear logic : a certain amount of commutativity is needed in order to make a
good use of exponentials. Here one has to mention the work of Lambek (1958)
[141 which came out from linguistic considerations; his syntactic calculus is
pased on a non-commutative conjunction (corresponding to our ) and two
jmplications, - and o, one to the right and one to the left. The general
framework is that of jntuitionistic sequents I' + A, with no structurals at all.
In spite of its limited expressive power (only multiplicatives) and the
artificial intuitionistic framework, this work must be acknowledged as a true-
ancestor to linear logic ; its connection to linguistics can be seen as the
first serious evidence against the exclusive focus on mathematics. Moreover, its
rejection of exchange seem to indicate that, eventually, linear logic should be
non-commutative, i.e. without exchange. See II.9. for a discussion of
non—commutativity.

As soon as weakening and contraction have been expelled, one can imagine

other structural rules, among which the mix rule

rv4 rea
T, r 4,4

has some interest. If one were to accept this rule, then good taste would
require to add the void sequent + as an axiom (without weakening, this has no
dramatic consequence). Mix is connected with the neutral multiplicative elements
1 and 1, more precisely, it states that they are the same, which is of course a
simplifying hypothesis. It can also be viewed as the fact that ® is stronger
than ¢, which means that the absence of interaction should be a form of
interaction. As a matter of fact there is not enough material to make a definite
judgement as to a possible inclusion of mix. For the reader acquainted with
proof-nets [7], the inclusion of this rule would have an unpleasant feature,
namely to abolish the idea of cyclicity which enabled us to forward the
information from any part of the structures to any other part.
II.7. linear sequent calculus

In order to present the calculus, we shall adopt the following notational
simplification : formulas ere written from literals p,q,r,p+,q~, v+ etc. and
constants 1, L, T, 0, by means of the connectives ®, ®, &, @ (binary) !, ?

(unary) and the quantifiers vx, 3x. Negation is def ined by De Morgan equations ,
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and linear implication is also a defined connective :

1L

=3t .L-"=d1
b = -

T-dO 0‘--dT
Pt o=y Pt P o=y P

(AeB)+ =4 AleBL

(A%B)* =4 AleBt
(A&B)* =3 AleBt

(AmB)* =4 AteB*-

(1a)* =, 7at (PA) =, 1A
(YxA)*- =4 axat (3xA)L =4 vxAL
- = L
A~ B 4 A% B
Sequents are now of the form - 4, i.e. the left hand side is wvoid.
sequents I' + 4 can be mimicked as + I'*,4.
IDENTITY GROUP
+ A, AL (Identity axiom)
+TI,A - Al,d
(Cut) (Cut rule)
FTI,d
STRUCTURAL GROUP
kT (e) (exchange)
-
in this rule I'’ is obtained from I' by a permutation.
LOGICAL GROUP
multiplicatives
+I,A + B,d () - I',A,B (9)
v T,A0B,4 F T, A%B
-1 (axiom) L (W
TI,1
additives
FT,A FT,B g FTLA Gl T8 g2
v T,A8B - T,AB v I, 5B

- I,T (axiom)

General
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exponentials
o,A 3 s as
_:_.Eﬂ. (&) FTA (a9 (dereliction)
F T, A +I',?A
PP (weakening)

+I,7A
- I',74,74

FT,7A

(c?) (contraction)

quantifiers
FhA w FALYA (g
F I',¥YxA + I',3xA

(In rule (¥), x must not be free in r)

I1.8. comments

The rule for ™" shows that the comma behaves like a hypocritical ™" (on
the left it would behave like "@"); "and", "or", "imply" are therefore read as
"o" N hy! N "o,

identity group : the principles of this group express that "A is A", which
is perhaps the ultimate meening of logic ... In other terms, they say that an
action (output, answer) of type A is a reaction (input, question) of type A*.
One can also view the identity axiom as the identity function from A to A, or
from A+ to AY, and the symmetry of the axiom forbids us to choose between these
two legitimate interpretations. But in fact, the interpretation as a function is
wrong, since it forgets the dynamics. Let us try to understand this very
important point : the only dynamical feature of the system is the cut-rule ;
without cut, there would be no action performed. The cut puts together an action
and a reaction of the same type (i.e. an action of type A and an action of
type A*) and something happens, namely "eut elimination”. Let us take a very
trivial analogy, namely DIN plugs for electronic equipment : we may think of the

axiom + A,A' as an extension wire between two complementary DIN plugs :

- ]

AL A

More generally, we can think of a sequent I' as the interface of an electronic
equipment, this interface being made of DIN plugs of various forms ; the
negation corresponds to the complementarity between male and female plugs. Now a
proof of I' can be seen as any equipment with interface I'. Now, the cut rule is

7 458
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well explained as a plugging :

ri.i..;mm—a ... .4

A A+

the main property of the extension wire is that
r...,———a g——a
can be replaced by

r...———a

It seems that the ultimate, deep meaning of cut-elimination is located there.

Observe that commonsense would forbid self-plugging of an extension wire :

which would correspond, in terms of the proof-nets of [7] to the incestuous
configuration :

A

—mr

which admits two shortrips.

structural group : see additional discussion in II.9. .

logical group :
multiplicatives and additives : notice the difference between the rule for ® and
the rule for & : ® requires disjoint contexts (which will never be identified
unless ? is heavily wused) whereas & works with twice the same context. In a
similar way, the two disjunctions are very different, since ® requires one among
the premises, whereas ¥ requires both).
exponentials : ! and ? are modalities. Modalities are very special connectives.
The rule for ! does not define this connective, since the context I' must start
with "?", which is the dual of "!", i.e. "!" is eventually defined in terms of
itself. To understand the difference between exponentials and ~say- additives,
let us remark that, if we write additive rules for another pair &', ®’, then the
equivalence of this new pair with &, ® is immediate, whereas, one can have
another pair !’, ?’, with the same rules as !, ?, but non provably equivalent.
The general symmetries of sequent crlculus (namely that a cut on a complex

formula splits into simpler cuts, and the same for axioms) are such that, when
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we know the (right) rule for &, then the rules for ® are forced, and
conversely. In the case of modalities, the rule for ! does not determine the
rules for ? (except dereliction), in particular, the possibility of refining the
exponentials is widely open for that reason. The connective "!" (of course) has
the meaning of a storage. To be very precise, "!" indicates the potentiality of
a duplication : an action of type 'A consists of an action of type A on the slot
of a copying machine. The rules for "?" (why not) enable us, via cut, to make
this machine work : dereliction just takes back the original action, weakening
destroys it, while contraction duplicates the data. In terms of computer, the
rules for ! and ? correspond to storing, reading, erasing and duplicating. The
jmportance of exponentials w.r.t. memory has been pointed out by Yves Lafont :
see [11], in particular the idea of computing without garbage collector.
guantifiers : they are not very different from what they are in usual logic, if
we except the disturbing fact that 3 is now the exact dual of Y. It is important
to remark that ¥ is very close to & (and that 3 is very close to @). But are
there quantifier analogues for "e" and gt 2 (Clearly such "multiplicative
quantifiers” should differ from ¥ and 3 in the sense that they would allow not a
single instanciation, but several simultaneous instanciations, and therefore
they would be very close to exponentials. In other terms, one cannot exclude the
replacement of the awkward modals "!" and "2% by some more regular quantifiers.
The eight logical operations can be written on a cubic pattern :

|
Wi

organized along the three oppositions

vertical : conjunctive/disjunctive

horizontal : one/all

oblique : binary/uniform.
II.9. non-commutativity

Non—commutative linear logic is still very experimental, and we shall here
just discuss the most obvious system, which contains no exponentials. Compared

to II.7., we must make the following adaptations :

(48B)* =, BLeA* (a9B)+ =, Brea*
d d

"t

L3 £5K70F 47

XV
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Besides linear implication

- = L
A- B 4 A% B

there will coexist linear retro-implication,

Boe A=, By Ak

:? 4
|

Transposition will no longer be the identification between A - B and
B+ - A+ (which involved commutativity of %), but the fact that A - B and AL » B+

are literally the same. One of the most exciting (and problematic) intuitions

about non-commutativity is that it should have a temporal meaning : - is usual

causality (in the future), whereas o~ is past causality. Everybody will easily

-find examples of past causality in real life; however since we are not
~f~nt accustomed to think rigorously in those terms, the most basic evidences may be
" misleading, and the existence of some formal model (even very incomplete) might
be of essential use. This is to say that in such matters, we cannot use common
sense at all, and that we must follow some kind of mathematical pattern, even

against intuition. Here comes a very interesting phenomenon (that can be

understood by those who know proof-nets, see [7]) : the natural way of
] introducing non-commutativity is not to expell exchange, but to restrict it to
circular permutations. In fact this corresponds exactly to the restriction to

planar proof-nets, i.e. to proof-nets with no crossings between the axiom links.

But if we start to forbid crossings of lines in the non-commutative case, do

this mean that the commutative proofs are incorrect ? Or should we, as suggested
by Freyd (private discussion) view them as proof-braids 7 Surely linear logic
has a lot of relations with monoidal categories (there are even categories like

Barr’s "s~Autonomous categories"” [1] which have additives, multiplicatives and

an involution), and proof-braids could be a good candidate to describe the

] various isomorphisms in a non—commutative monoidal category. But what could be
the temporal meaning of the twistings between axiom links ? This seems to be an
absolute mystery ...

The restriction to circular permutations (which means that we consider the
sequents as written on a circle) makes a reasonable candidate for a logic (as

long as we ignore exponentials). In view of the identification between
BeA - C and A~ (B-C)

which is essentially associativity of "®", we can even understand that in the
product B®A, the second component is done before the first one.

We can keep the rules as they have been written in II1.7. ; if we want to
have 2-sided sequents, it 1is natural to translate Al,...,An 3 Bl,...,Bm as
F A:,...,Ai,ﬂl,...,ﬂm. One of the obvious features of the calculus is that the
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two implications do not mingle, and this will be essential when we shall try to
work with PROLOG.

71.10. logic programming

It seems that the exact relation of PROLOG (and more generally Robinson’s
resolution) to Gentzen’s Hauptsatz has been overloocked in the full literature on
logic programming, so let us explain this roughly : the famous result of Gentzen
states that, if F A is a logical consequence (in the sense of classical logic)
of axioms Fi + Ai, then there is a proof of A, with the following properties :

it uses as axioms instanciations F; [ Ai of the original axioms

the cut rule is restricted to cut—formulas occuring in some instanciation
of those axioms.

(For a textbook presentation of this result, see e.g. [6], p.123.)

This is not exactly Robinson’s resolution, but it does not take much to get
jt from that result : assume now that the axioms are Horn clauses, i.e. Fi and
Ai are made of atomic formulas, and Ai is just one formula ; assume also that A
js atomic. Then since cut is restricted to atomic formulas, logical rules cannot
be used (because logical symbols camnnot disappear), and we are therefore left
with the following list of principles :

i) instanciations of axioms (it is enough to consider non-logical axioms)

ii) cut

iii) weskening

iv) contraction

v) exchange
It is easily shown that one can restrict oneself to deductions made only of Horn
clauses ; then one gets rid of :

iii) weakening : if we replace some clause I' - C by I',B + C, since our goal has
no left part, the fate of B is to disappear by means of a cut, and we can assume
that this will happen by proving at some later moment + B : but this 1is
masochism ! It would have been simpler not to weasken at all.

iv) contraction : if we replace some clause I',B,B - C by I',B + C, since at some
moment, our B must be cut with one proof of + B (as above), it would have been
possible to cut twice at the level of I',B,B + C to get I'  C. Observe that this
idea removes a rule, but the price to pay is a doubling of the task, since B
will be searched for twice.

v) exchange : it is finally possible to do our cuts in such an order that
exchange is never used.

Finally, we are left with steps i) and ii), and the familiar resolution method
is nothing but automatic proving inside i) + ii). But this ﬁeans that w are in

fact trying to meke proofs inside non-commutative linear logic ! Now it is
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necessary to make a very important —although commonplace~ remark : so—called
logic programming is logical at two levels

externally, since it is concerned with the notion of classical consequence

internally, since its operationality obeys to certain logical laws (which
indeed are those of non-commutative linear logic)

The two logics, the internal and the external one, have no reason to
coincide ; it is because people want them to coincide that they are lead to
absolute nonsense. Let us take an example : in classical logic (which is the
external logic of PROLOG), everybody knows that there are 18 binary connectives,
period. A quick inspection of the list shows that only one of them looks like a
conjunction : this is the familiar boolean conjunction which is desperately
commutative and idempotent. But is the inner conjunction of PROLOG like that =
If we compare the clauses A,AF B and A + B, it is very clear that the first one
requires a duplication of the intermediate goal A, hence internally speaking,
"A and A" does not mean "A", unless we decide to ignore problems of efficiency.

But the inner conjunction is not even commutative, since the clauses
A,B + C and B,A + C have a very different behaviour, typically when B fails and
A neither succeeds nor fails ; the failure of commutativity is by the way much
more extreme than the failure of idempotency. Since classical logic implies the
commutativity of conjunction, the only way to avoid an immediate contradiction
in the example just given is to identify failure with the absence of success,
i.e. to introduce unprovability, which leads to the deficient nonsense already
met in section II.4. : this is the so-called "closed world assumption", which
came from the furious attempt to identify inner and outer logic, and just
succeeded in writing absurdities both from the viewpoint of classical logic and
from the viewpoint of operationality.

But failure is not the absence of success : failure is a positive
information, namely that we have followed a certain operational pattern up to
the end, and that we are aware of it. This is definitely different from the
absence of success which could for instance involve non terminating loops. So,
if we can express exactly which operational pattern we have followed, it will be
possible to internalize failure as the provability of some statement, and since
provability is the kind of feature that can be mechanized, we are not led to
computational nonsense, like in the case of the "closed world assumption”. In
particular, the idea of "negation as failure" is perfectly sound, provided we
are prepared to accept that such a negation cannot at the same time be
classical ! In fact we propose to identify negation in PROLOG with linear
negation, then to use the usual implication "=" to speak of success, and the
reverse arrow "«" to speak of failure. ILet us give a very primitive example :

we just consider propositional clauses A,B,C etc. and we assume that there are
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only two clauses ending with E, namely

(1) ABFE
(11) C,DrE

Let us describe in familiar terms the part of the procedure involving the
subgoal E : we try to prove E by means of (I), and in case attempt (I) fails, we
try by means of (II); if (II) fails as well, then E fails. To say that
attempt (I) succeeds is just AeB ("do B, then do A"), and the fact that success

is then forwarded to E is therefore

(€3] AeB - E

Failure of attempt (I) can be decomposed into two subcases : either B fails, or
B succeeds and then A fails. This will be exactly represented by B*®(AleB); now,
once attempt (I) has failed, a success of attempt (II) will be forwarded to E :

CeDe(B*® (A'®B)) = E

which can be written as two axioms
(2) CaDeB+ - E
3 CeDeAt@B - E

Finally, failure of both (I) and (II) will cause a failure of E :

(D@ (C+eD) ))e(B+® (A*@B)) - EL
which can be written as

(@) DreBt - E*

(5) Destel - E-
(8) _CteDeBt - E*
% CleDeAteB - E-

Axioms (4)-(7) are indeed retro-causalities "in order to do E, one must do...",

Typically (4) is B9D ~ E, etc. In fact, (1)-(7) can be written as right-handed

sequents made of literals, typically (5) becomes
(5") + BY,A,D,E+ etc.
Then one should now compare this axiomatization with the operationality of

PROLOG, and that task should better be done by specialists of logic programming
(by the way, there is some work in preparation with Jean Gallier and Stan Raatz,
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whose goal is the study of any form of control in logic programming by means of

a linear logic axiomatization).

Let us just mention some key points :
i} it is very important that the two implications do not mingle ; cyclic

exchange may cause some problems, easily solved by adding two special constants

e, s, with et =4 S st =4 © and writing, instead of (57)

(5") + e,Bt,A,D,Etes
and then looking at the provability of goals
+ e,Bes or + e,E*es

to express success or failure.

ii) a careful look shows that we are indeed using several meanings of "and",
"or", "implies". Typically, "®" is wused when we are listing several
possibilities (e.g. for failure), whereas "®" occurs by means of retrocausality
and indicates a complex interaction between subgoals.

I1.11. relation with intuitionistic logic

There is a translation of intuitionistic logic inside linear lqgic : read

A= B as 'A- B
AAB A&B
AV B '‘Ae !B
VXA YxA
IxA Ix!A
-A 1A~ 0

see [7], ch. 5 for more details. This translation is faithful not only w.r.t.
provability, but also w.r.t. proofs. As a matter of fact, linear logic came from
a denotational decomposition of disjunction which involved linearization
processes, and later on gave rise to all the connectives of linear logic. But an
essential concern has always been the possibility of a faithful translation of
intuitionistic logic, since we were afraid of a possible loss of expressive
power : this is why non-commutative linear logic was a bit overlooked in the
beginning.

To give a demonstration of the improvements immediately caused by this
translation, let us look at the familiar technique of fake substitution in typed
A-calculus : in order to improve implementations, people imagined to indicate
substitutions, but not to make them : between (Axt)u and t[u/x], they have

introduced an intermediate step, namely t{u/x}, where .{./x) stands for a fake
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gubstitution. This operation has no logical status, which mekes its manipulation
dengerous. In linear logic, this intermediate step will be built in : since
Ao B is !'A - B, we need two steps to mimick a A-abstraction, so to speak

(1) a "memory" step

(2) a “"linear A-abstraction"
when we normalize, usual pJ-conversion splits into two steps, one idealing
with (2), the other with (1), and these two steps altogether mimick
p-conversion. But if one stops at step (2), then one gets something that could
be denoted by t{u/x), and this eventually gives a logical status to what was

originally just control.
III. the main methodological conflicts

ITI1.1. against reductionism

The first important methodological contradiction lies in the oppositions

dynamic / static
sense / denotation
finite / infinite

these three oppositions are different aspect of the same problem.
Let us start with Frege, who distinguished between sense and denotation :

if we take the sentence

Erich von Stroheim is the author of Greed

"Erich von Stroheim" and "the author of Greed" have the same denotation, i.e.
represent the same external cbject, but have not the same sense (otherwise it
would be pointless to state such a sentence). Denotationally speaking the two
expressions refer to the same thing, whereas one has to check something (look at
a dictionary, make a proof, a computation) to relate their two distinct senses.
This is why

denotation is static, sense is dynamic.

The only extant mathematical semantics for computation are denotational,
i.e. static. This is the case for the original semantics of Scott [17], which
dates back to 1969, and this remains true for the more recent coherent semantics
of the author [7]. These semantics interpret proofs as functions, instead of
actions. But computation is a dynamic process, analogous to -say- mechanics. The
denotational approach to computation is to computer science what statics is to
mechanics : a small part of the subject, but a relevant one. The fact that

denotational semantics is kept constant during a computational process should be
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compared to the existence of static invariants like mass in classical mechanics.
But the core of mechanics is dynamics, where other invariants of a dynamical
nature, like energy, impulsion etc. play a prominent role. Trying to modelize
programs as actions is therefore trying to fill the most obvious gap in the
theory. There is no appropriate extant name for what we are aiming at : the name
"operational semantics" has been already widely used to speak of step-by-step
paraphrases of computational processes, while we are clearly aiming at a less

ad hoc description. This is why we propose the name

geometry of interactions

for such a thing.

The inadequation of the denotational approach w.r.t. computation becomes
conspicuous if we observe that such semantics will have a strong tendency to be
infinite, whereas programs are finite dynamical processes. So to speak, the
denotational approach exchanges a finite dynamical action for an infinite static
situation. How is it possible ? Simply by considering not only the behaviour of
the system in an actual run (which is very difficult to analyze), but taking at
the same time all possible behaviours ; typically, if a program is functional,
by listing, in front of every possible input, the corresponding output. This
yields an inifinitary expansion, in which the results are flatly embedded. Let

us take a very basic example : a program of type
(Al&Bl)@...@(An&Bn)

will be run by choosing between A1 and Bl’ . An and Bn' The denotational

approach will consider altogether the 2" possible runs, so to include the actual
one. But only one of these runs is actual, and this interpretation is clearly
wrong. Remark here that syntax is much less greedy, since it encodes the
situation with only 2n data. Another familiar example of replacement of a finite
dynamical process by an infinite listing is the well-known "w-rule", prominent
in German proof—-theory : since the dynamics of induction (i.e. recurrence) is
very difficult to handle, one introduces flat listings A[0],A[1],A[2],....; then
one has to cope with infinitary syntax, which means that eventually one has to
encode it by means of —say- Kleene brackets to come back to the finite. This
would not be so bad if the dynamics of Kleene indices were not so ad hoc. One
has ' eventually exchanged an intrinsic dynamics for an ad hoc one, and something
essential has been lost. This is why there is little room for the w-rule in
computer science. It is not absurd to dream of a direct dynamical approach to

induction, where the infinite proof-tree would only be an ideal (direct) limit
that we never reach : but this is not that easy...
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Hilbert's mistake, when he tried to express the infinite in terms of the
finite was of a reductionist nature : he neglected the dynamics. The dynamics
coming from the elimination of infinity is so complex that ope can hardly see
any reduction there. But once reductonism has been dumped, Hilbert's claim
pecomes reasonable : infinity is an undirect way to speak of the finite ; more
precisely infinity is about finite dynamical processes.

These basic oppositions are at work when we try to understand "!" ; should
we think of !'A as something like ean infinite tensor 8 A ? With some minor
adjustments, e.g. [ (184), this is denotationally sound ; however, such an
jdentification would be a complete dynamical nonsense. This is because the rule
for "!" indicates unlimited possibilities of duplication, but not a concrete
one : the duplication occurs during elimination of cuts with ?A*, and it is in
this dual part that the information "how many copies do you want" is located. We
must not confuse a copying machine that can produce 3000 copies of an original
document with these 3000 copies : maybe we only need one. The clarification of
this point could be of great importance : consider for instance bounded
exponentials !aA,?cA, that could be added to linear logic with the intuitive
meaning of "iterate a times". They obviously obey to the following laws :

-
797, A ) FT,A (d?) (dereliction)
v+ Za1l, laA FI,71A
T (w?) (weskening)
v I,70A
kT, %A, 754 (c?) (contraction)

b T, 7a+BA

and this shows that there is some underlying polynomial structure in the
exponentials. Now, it is not always the case that we can associate polynomials
to all exponentials occuring in a proof of standard linear logic, especially
when we have to deal with cut ; hence the proofs admitting such polynomial
indexings are very peculiar. In fact they admit a normalization in polynomial
time : it has already been observed in [7], that, without contraction, the
cut-elimination process is essentially shrinking (hence in linear time). Now, if
we are with polynomial exponentials, what we can do is first replace all !aA
(resp. 7aA) by something like e A (resp. 2 A), which induces a polynomial
expansion of the proof, and then normalize. Some experimental refinements of
linear logic —in order to cope with the converse problem— are under study (with
André Scedrov and Phil Scott) and it seems likely that polynomial time functions
are typable in such systems. Unfortunately what has so far been done is

syntactically awkward, whereas the idea clearly deserves a natural syntax.
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IV.2. against subjectivism

Finally, what is closest to the idea of dynamics is syntax, which makes all’
the necessary distinctions of sense and has the good taste of being finite. So
why not contenting oneself with syntax ? This leads to our second opposition ;

geometry / taxonomy

In fact this opposition is much more central than the former ones. The problenm
with syntax is that it is good in many respects but one : it contains irrelevant
informations. These informations are very often of temporal nature, and induce
an ad hoc temporality. Our problem will be to find out what is hidden behind
syntax, without going to denotation, so to speak :

a non-subjectivistic approach to sense.

To understand how syntax may convey artificial information, imagine that I
want to write something like AeBeC. Since ® is binary, I must choose between
(AeB)eC and A®(BeC), whereas I had in mind a ternary construction. So both
solutions contain an irrelevant information, namely some ad hoc temporality in
the building of AeBeC. For instance if I have chosen the first representation,
then the subconfiguration A®B will be easier to handle than BeC.

a) what is taxonomy ?

Taxonomy is the habit of classification by means of dictionaries, languages etc.
It is an essential human activity, and corresponds to our need for putting some
order into the reality we are dealing with. Let us mention :

i) the classification of animals into various species, subspecies etc.

ii) Mendelejeff’s periodic classification of elements

iii) the use of coordinates on Earth

iv) musical notation

These four examples are very useful in real life, but not of the same
quality. For instance, there is something arbitrary in iii) (e.g. the starting
meridian, the units), but it stays reasonable as long as the coordinates are
organized along the rotating axis of Earth 5 iv) is clearly the product of
historical accidents, which have eventually produced 10-odd keys, and is clearly
an obstacle to musical practice ; i) is very ad hoc : one counts numbers of
eyes, wings, testicles, but the discovery of Australia forced taxonomists to add
new entries to the classification 3 ii) is very good, because based on the
number of protons of atoms ; it is so good that new elements were found (or even

created) by looking at the gaps of the table, which would have been impossible
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. if these elements had been classified in the style of i) by means of shapes,
colours, odours etc. To understand the difference between the scientific
quality of i) and ii) : nowadays, we can exclude the existence of a fabulous
metal like orichalch, but not of a fabulous beast like a unicorn.

Taxonomy is the bureaucracy of science. This means that -like its State
analogue— it is useful, but has a propensity to produce endless obstacles to the
execution of the simplest task : its natural tendency is to live on its own and
to expell the remlity it is about. Taxonomy can be that bad because of the human
need to name, to classify, to number, by means of anything whatsoever, Zodiacal
signs, "psychological” tests etc.

p) progress in science is very often connected with a figﬁt against
taxonomy : typically, the discovery that the distinction parabola / hyperbola /
ellipse is irrelevant from the algebraic viewpoint, and the subsequent
introduction of the projective plane. Algebraically spesking the distinction
between these three types of curves appears as a taxonomy, namely the choice of
points at infinity. The usual way of getting rid of taxonomy is by exhibiting
some kind of invariants w.r.t. a natural notion of equivalence, e.g. homotopy
etc. The determination of the kind of equivalence depends on scientific choices,
e.g. we decide to focus on algebraic properties, and to forget metric ones.

v) mathematical logic, which deals by definition with language, is often
taking the opposite viewpoint, namely that any mathematical object comes with an
extrinsic description, which is claimed to be part of its structure. This
viewpoint is widely spread under the name "intensionality". Op the whole, the
tendency of intensionality would be to distinguish between right and left-handed
cups, because we have in mind different uses (which hand holds the cup), whereas
mathematicians (and manufacturers) will identify the two things. However the
positive aspect of intensionality is that it has kept alive distinctions like

functions as graphs / functions as programs

which are surely very important, and that have been overlooked by the main
stream of mathematics —especially the Cantorian approach—. The negative aspect
of this tradition lies in its implicit slogan "the map is the territory", which
strongly opposes to any serious structural study.

8) recursive functions are a typical example of this situation. We have
been knowing for more than 50 years that a recursive function is not a graph,
but a finite program. Kleene indices introduce a class of finite programs which
is enoggh to make decent study of recursive functions, together with nice tools
~like the recursion theorem, the Snm theorem— which enable us to manipulate them

in a uniform way. Kleene indices convey the necessary amount of finiteness,

+
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dynamicity etc. needed to speak of programs, but they are not programs. They are

Just some ad hoc taxonomy enabling us to reduce an actual program to something
which -roughly speaking- does the same thing. The main stream of recursion
theory treats Kleene brackets as.a black box, enjoying some abstract enumeration
property... But who has ever seen the tail of an actual index ?

There should be somewhere a purely geometrical notion of finite dynamical
structure (not relying on ad hoc schemes and‘dirty encodings). The problem is to
find tools sharp enough to isolate them. Our methodological hypothesis is that
the problem is implicitely solved by Gentzen's Hauptsatz, which eliminates
abstract notions in proofs (cuts) by introducing finite dynamics, and therefore
looks 1like a good approximation to a universal dynamics. To solve the problem

i explicitly would mean to find out the geometricél meaning of the Hauptsatz, i.e.
Mi; what is hidden behind the somewhat boring syntactical manipulations it involves.
Sl On this precise point (to take the Hauptsatz as our ultimate reference) we

oy shall certainly disagree with category—-theorists ; besides personal taste, one
must acknowledge that category-theory presents a very clean approach to many
N problems of computer-science. Unfortunately (if one forgets hypothetical uses of
bicategories) it is purely denotational, i.e. modelizes computation by

equalities. However one can distinguish between dynamic end static uses of

equality in the categorical approach : typically when we formulate a universal
problem, we write a commuting diagram, together with unicity requirements. The
il commuting diagrams are enough for computing, so the equality here has a dynamic

meaning ; the unicity requirement is essentially about possible trenspositions

of rules, hence is Jjust a change of description (taxonomy), and the equality
there is static. See the introduction of [9] for a short discussion.

IV. the geometry of cut-elimination

| Iv.1. system F

This system, also known as polymorphic A-calculus, is built as the
Howard—-isomorphic copy of the system of natural deduction for second order
propositional logic. Due to the Howard isomorphism (which is a precise technical
restatement of Heyting’s paradigm) it will be enough to concentrate on the
aspect '"natural deduction" of the system. The main features of the system have
been established in [5] :

i) normalization : one can execute the programs represented by the proofs
by means of certain rewritings that do converge

i1) representation : any numerical algorithm that has a proof of
termination inside usual mathematics (i.e. : second order arithmetic) can be

represented inside the system. However the internalized salgorithm will be
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slightly different from the original one. Therefore we expect that, when we
express some provably terminating algorithm inside F, some regularity Is added .

The first approximation to a universal geometry of computation could be the
rewriting process i), but this is wrong : this process has in turn to be
implemented. This implementation should not be left to engineering ; the
mathematical study of what is behind rewriting is a more technical expression of
our program of "geometry of interaction".

In what follows, a complete familiarity with Howard's isomorphism [12] (see
also [10]) is supposed. This isomorphism enables us to replace functional
expressions by deductions. The gain is that, when we view functional terms as
proofs, there are some tortures that we can inflict to them that we could not
perform on functional expressioms : in particular, the symmetrization I/0 that
will eventually lead to proof-nets. Many misconceptions concerning linear logic
and proof-nets come from the fact that people stick too much to the idea of
variable. But the use of variables must be seen as a taxonomy : we folloﬁ too
much our old-fashioned intuitions about inputs and outputs and in particular the
functional notation asymmetrizes situations which are perhaps symmetric (again
think of right and left handed cups).

IV.2. natural deduction

Natural deduction has mainly been studied by Dag Prawitz in the 60’s, see
[16], [10]. It can be seen as an alternative formulation of sequent calculus :

instead of sequents I' + A, one considers deductions

]

A
with a tree-like form. Every proof in sequent calculus induces a unique natural
deduction, and conversely, every natural deduction comes from a sequent calculus
proof, but this ancestor is far from being unique ! To explain the importance of
this fact let us quote Prawitz (approximation of a private discussion, June ’82)
<< J.Y.G. : I prefer sequent calculus which is more synthetic...

D.P. : maybe you are right. But sequent calculus is Jjust a system of
derived rules sbout proofs, whereas natural deduction tries to represent the
proofs themselves as primitive objects. >>

This point is very central : sequent calculus is the synthetic way of
manipulating those mysterious hidden objects (that we call proofs, programs, and
we would like to see as actions). But natural deduction has been the first
serious attempt to find out what these objects could be. To give an analogy : we
can manipulate synthetic units like "tuner", "amplifier", "loudspeaker", and
plug them together when certain matchings are fulfilled. Now, the hifi unit we
thus obtain works by itself, without any reference to our decomposition into
several units that was so essential to us : the resulting object is a complex

mixture of transistors, diods etc., in which, by the way, other relevant

Snezre ooy oo
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synthetic units could have been individualized. In other terms : to build
something (a proof, a program) we must go step~-by-step and produce bigger and
bigger synthetic configurations. But the object produced should not remember our
particular step by step decomposition, which is purely taxonomic. Sequent
calculus is presumably the best possible taxonomic system for actions. But an

action may come from several descriptions, typically when
transposition of rules
occurs. The situation becomes dramatic with the Hauptsatz, where 90% of one’s

energy is spent on bureaucratic problems of transposing rules. Let us give an

example : when we meet a configuration

.__"_’_"_A R ___*'_AL_if_’ s
’ L ’
FTI’,A - At,4 cut

F A

there is no natural way to eliminate this cut, since the unspecified rules (R)
and (S) do not act on A or A‘; then the idea is to forward the cut upwards :

L
LA FoALA
Fra o,
P g
Fr,a

But, in doing so, we have decided that rule (R) should now be rewritten before
rule (S), whereas the other choice would have been legitimate too. Hence, from a
symetrical problem, we are led to an asymetric solution : the taxonomical
devices that force us to write (R) before (S) or (S) before (R) are not more
respectable than the alphabetical order in the dictionary. One should try to get
rid of them, or at least, ensure that their effect is limited. What natural
deduction achieves is to identify intuitionistic sequent calculus proofs that
are the same up to order of rules. (In classical logic, if we start with two
proofs which are just wvariants w.r.t. transposition of rules, then the
peculiarities of contraction on both sides are such that eventually the
Hauptsatz will lead to two cut-free proofs which are not even variants.)

IV. 3 limitations of natural deduction

Natural deduction, which succeeds in identifying a terrific number of
inversion-related sequent calculus proofs, is not free from serious defects :

a) Natural deduction is only satisfactory for o, V¥, A ; the connectives v
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and 3 receive a very ad hoc treatment : the elimination rule for " s
£ B
AVE c c
c

with the presence of an extraneous formula C. Then the problems of commutation
of rules (i.e. changing the extraneous C) become prominent, and the solution of
the literature (so-called "commutative conversions") is just bricolage.

B) In fact, there is a hidden taxonomy in natural deduction : in deduction

one distinguishes one conclusion, and several hypotheses. Since the

P

conclusion is always unambiguous, there is no problem to determine which is the
last rule used etc. The connectives =, A, and the quantifier Vv accept this

taxonomy without any apparent problem. But disjunction would rather prefer a

rule of the form AV B
A B with two conclusions. But this would go
against the taxonomic requirement "one conclusion at a time".

v) In natural deduction, one distinguishes between iniroductions and
eliminations. Our claim is that eliminations rules are just introductions (for a
dual connective), but written upside down. For instance, the elimination rule
for implication is written as A A=B

—

and B is the official conclusion of the rule. But the hidden conclusion of the
rule is A o B. This point should be familiar to specialists of natural
deduction, where one introduces the "main hypothesis", which plays the role of
the actual conclusion of a deduction. For instance, in order to cope with the
lack of compositionality of "hexagons" in denotational semantics, this change of
viewpoint becomes prominent, see e.g. [4] : in this paper, this shift of
viewpoint yields the hexagon property for normal proofs (hence for all proofs,
using normalization), whereas if one sticks to the usual taxonomy, one gets the
impression that some compositionality is required.

&) Natural deduction uses global rules, typically

A
B which apply to whole deductions, in contrast to rules
A=B like the elimination rule for », which apply to formulas.

In the 70’s, Rick Statman made an attempt [18] to study the geometry of
natural deduction, and specially emphasized point &), associating a "genus" to
deductions. But since he had no way to restore symmetry, in order to cope with
—~say~ point 7), the attempt eventually failed.

P T
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IvV.4. proof-nets
Linear logic makes us hope that a final answer to the problem of inversion

of rules might be found. This is because of the symmetrical nature of linear
logic : the essential connective is now "o", which conveys the purely
implicative meaning of "»", putting aside the component "1 not of implicative
nature. Hence, if one wants to study "»", we can study separately "o and MM,
Here we shall concentrate on "~", which in linear logic is defined from "g" by

A-=B =, AL 9 B. The main idea will be to replace a natural deduction

d

e ™

by a proof-net with several conclusions, I't,A. Everytime

a formula will be turned upside down, the negation symbol (-)* will be needed.

a) when I write

D
' EEEES

in natural deduction, I can bend

A58 so to get :
AL B this suggests the introduction of the
AleR (non global) binary rule :
Cc D
CeD
B) when I write A Ao B I can turn B and A » B upside down ;
B this leads to the expression
A BL
AeBL which suggests another binary rule :
C D
CaD
7) minimal and maximal formulas in a deduction will be represented by means of
configurations
and A At
A Tt Cut respectively.

The first case (axiom Ilink) represents an identity axiom, whereas the second
case (cut link) is the cut-rule ; the expression Cut, which is not a formula, is
there for inessential reasons.

This representation of proofs is the ultimate possible identification of
proofs of sequent calculus. Typically the net below represents two algorithms :
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on one side, the algorithm which takes a binary function f of type
A - (B -~ C) into a function g of type B - (A - C) by interchanging the inputs

on the other side, the algorithm which takes a ternary sequence bea®c of
type B ® (A ® C1) into a®bac of type A @ (BoCh).

=
L & \Ll

A Be Ct BL At =% C
Ae (BaeCh) BL % (A % C)

These two algorithms are phyéically the same because they correspond to the same
pointer moves (represented by the axiom links) independently of the choice of
the input side and of the output side. (By the way, observe that this proof-net
is non-planar, i.e. wrong from the non-commutative standpoint.)

The main mathematical problem comes from the fact that we have expelled
global (i.e. contextual) rules. Locally speaking the rules for ® and % are
exactly the same. Hence one must find a global soundness criterion for the
graphs written with such rules to be proof-nets, i.e. to represent (at least)
one proof of sequent calculus. The answer is by means of the notion of a cyclic
trip, which mimicks, in a formal way, the transportation of information during a
cut-elimination process. For more details, one may consult [7] . However, this
work is satisfactory only w.r.t. (-)*, ®, @ (hence - as well). More recently,
the notion of proof-net has been extended to quantifiers, see [9]. The solution
found there could be the basis for a further extension to additives and
exponentials, but what is known so far is only very partial. The weakening rules
(1) and (w?) seem also to pose a very delicate problem, since they seem to
contradict cyelicity.

IV.5. getting rid of syntax

This is the ultimate aim, which has been achieved only for multiplicatives,
see [8], with essential improvements by Vincent Danos and Laurent Regnier [2].
In this case, the basic underlying structure turns out to be a permutation of
pointers, and the notion of a cyclic permutation plays a prominent role (Danos
3 and Regnier replaced cyclicity conditions’ by conditions involving connected
acyclic graphs, i.e. trees). It seems that the general solution (not yet known,
even for quantifiers) could be something like permutations of pointers, with
variable addresses, so that some (simple form of) unification could be needed
for the composition of moves : yet another connection with logic programuing !

When one gets rid of syntax, an immediate question is

what is a type ?
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Types have always been part of some rigid syntactic (i.e. taxonomic)
discipline, while we would prefer a general answer, not depending on the choice

of a particular system. Here we have to remember the familiar analogy between

" is a proof of A" and

"y is a program enjoying specification A"

i.e. types are specifications. Specifications can be seen as plugging
instructions. For instance one can plug something of type A with something of
type A » B and get something of type B. This is a particular case of the general
paradigm of plugging of complementary specifications, which is the meaning of
the cut-rule.

But let’s assume that our program has been pushed to the end (!), so that
we are without syntax. In the geometrical structure B representing a program w,
et us individualize two arbitrary complementary parts, B’ and ", which
communicate via a common border 38’ = ag". Does it make sense to "type" B’ and
B" in such a way that these "typings" will ensure that, once plugged via their
common border, B' and 8" yield a sound action ? The answer to this question is
only known in the multiplicative case, and still open in the other cases, even
for quantifiers. The short description below is taken from [8] (see also [2]),
and we shall assume a complete familiarity with proof-nets :

any switching S of B can uniquely be' decomposed as a disjoint sum S'+S" of
independent switchings of g’ and 8". Using S’, we get a certain permutation 9gs
of 3p’, and similarly, S" yields a permutation Tgn of 38" (= 3B'). The condition
for B to be a proof-net is exactly the fact that OgsTgn is cyclic for all s’,S".

Now, if we introduce

the notation glr
to say that o and 7 are two permutations defined on the
same set, and that or is cyclic
the sets of permutations
=(8")
z(8")

"

{04,;S’ switching of B’}
{Tou;S" switching of 8"y

"

then 8 is a proof-net if and only if :

Z(B') L Z(8")-

If we define the principal types of g’ and g" by :

pT(B") = Z(8" )™ pT(8") = Z(p")*+*
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then B’ and g" can be plugged together exactly when
pT(8’) L pT(B")

In other terms, the principal type of an algorithm should be a collection of
uporder behaviours”, permutations in the case just considered (more generally,
something like partial isometries in a cs-algebra 7). There is a notion of
orthogonal border behaviours, cyclicity in the multiplicative case (more
generally some kind of ergodicity ?). The principal type of an algorithm is not
the set of all its border behaviours (which has a bad structure), but a larger
set, its biorthogonal. (The reason is that if we take an algorithm of type
AsBeC, we shall not get the same border behaviour whether we write it using
Ae(BeC) or (AeB)eC, but this difference, due to taxonomy, is swallowed by the
use of biorthogonality.

0f course, it would be a nonsense to try to compute principal types, as
defined asbove. But plugging requires orthogonality of the principal types, and
not at all that each of them is the orthogonal of the other, so that there is
room in between. In particular, preset systems of typing can be seen as
convenient ways to get and manipulate majorizations of principal types. The
practical way of showing that B’ is pluggable with p" is therefore to find

convenient majorizations
pT(8’) < B’ pT(8") < B" with B* L B".

By the way, the types we attribute to algorithms in the multiplicative fragment
are always majorizations, and are seldom optimal.
There is still the problem of how to interpret cut-elimination. If we could

see an action as something es a partial isometry p in -say- a cx—algebra, then

an action is performed (cut-free) when p2 = 0, i.e. when its domain X and its
codomain Y are orthogonal subspaces : XY = 0. For a general action p
(corresponding to the idea of a proof with cuts), it would no longer be true
that XY = 0, but X would commute with Y, so that it would make sense to speak of
the projectors (subspaces) X’ = X —XY and Y’ = Y -XY. The syntactic operation of
cut—-elimination should be geometrically translated as a construction leading
from p, with domain X and codomain Y, to p’, with domain X’ and codomain Y’, the
jdea being to start from X' and to iterate p the number of times necessary to
exit through Y’. For instance the process of cut-elimination in the
multiplicative case can perfectly be interpreted in this way. However the

consideration of finite dimensional spaces would be enough in that case ; the
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introduction of more abstract spaces seems to be necessary in order to represent
irreversible processes like erasing, or simply to make room for duplications
when we shall interpret contraction. An attempted treatment of actions as
partial isometries in Hilbert space was started in Spring '87. It turned out
that this approach could not replace down to earth syntactic considerations, in
other terms that not enough material had been accumulated for a decent
conceptualization ; but we nevertheless still believe that Gentzen's Hauptsatz
should eventually be reformulated using the language of functional analysis !
IV.6. time, space, communication

Linear logic is eventually about time, space, communication, but is not a
temporal logic, or a kind of parallel language : such approaches try to develop
preexisting conceptions about time, processes, . etc.. In those matters, the
general understanding is so low that one has good chances to produce systems
whose aim is to avoid the study of their objects (remember the sentence of
Clémenceau : <<Quand je veux enterrer un probléme, je nomme une commission)>.
Linear logic is not "la commission du temps" or "la commission de 1la
communication”. The main methodological commitment is to refuse any a priori
intuition about these objects of study, and to assume that (at least part of)
the temporal, the parallel features of computation are already in Gentzen's
approach, but are simply hidden by taxonomy. We shall therefore search for the
answers to these essential problems inside refinements of usual logic, and not
in such and such ad hoc extensions.

Methodologically speaking we concentrate on the central issue of
unbracketing.

We are forced to program sequentially, by means of nested brackets. This
bracketing is a particular temporality for a program : if we perform the
operations in the order imposed by the brackets, then we shall eventually make
it. However, there might be other temporalities which may for instance come from
some unexpected property of the inputs, and which might be more interesting. The
idea of removing taxonomy, i.e. our temporality, by means of something 1like
proof-nets, is to give the maximum degree of freedom for the execution of a
program. The extension of proof-nets to quantifiers vields some additional hints
as to a possible nature of this temporality, namely the relative dependencies
between variables in massive processes of unification. In general, one should
see time as the partial order of causality ("I must compute this to get that"),
the absence of causality being perhaps of spacial nature. Negation would
therefore appear as the inversion of the sense of time, which is not an
unpleasant idea. The main problem one is faced with is that we have at least
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three intuitions sbout time :

i) time is logic modulo the order of rules
it) time Iis the cut-elimination process

ii1) time Is the contents of non-commtative linear logic

These three intuitions should be unified to some extent ; however, one of
the immediate difficulties with ii) is that cut-elimination is, at it stands, an
irreversible process (which is consistent with our current experience with time)
whereas the logical rules of iii) are symmetric w.r.t. the exchange past/future.
Moreover, technically speaking, there are problems to develop iii), namely to
have simultaneously commutative (spacial) and non-commutative (temporal)
features.

As to the symmetry of time, there is a new element coming in : in the study
of quantifiers, the normalization process uses some global procedures, which ,
seem to involve a global time. This is a computational nonsense (since the thing
will anyway be implemented by a local procedure) which seems to come from the
symmetry between past and future. If one drops this symmetry, i.e. if the
implication

vxA = A[t/x]

is only kept as a retro—causality, but not as a causality :

A[t/x] « YxA, (but not VYxA - A[t/x] )

it seems possible to keep local procedures, but it is very difficult to find any
milestone on which we could test such possible refinements of rules. But the
idea that starts to make its way is that

logical rules should not be symmetric w.r.t. time.

A last word about communication : on the basis of the work so far done, the

following conception of communication between systems seems to be reasonable :

processes communicate without understanding each other.

The idea should be that -at a very abstract level-, what processes share is a
common border, but that their inner instructions have nothing in common. So when

A receives a message from B, he can only perform global operations on it

—-erasing, duplicating, sending back to B-
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depending on which gate of the common border he received it through. When a
message is sent back to B, then B receives again his own stuff, that he can
read; but through an unexpected gate etc. Massive iterations of such
incomprehensions can perhaps mimick comprehension ; by the way this corresponds
to the way scientists use the patience of their colleagues to improve their
intuitions about their own work.

Finally, we must confess that we keep an eye on physics, especially quantum
mechanics. It is not excluded that strange linear connectives like "2" could be
useful to interpret some basic phenomena of physics...

But this is science-fiction.

REFERENCES

[1] Barr, M. :

=-autonomous categories, Springer lecture Notes 752.

[2] Danos, V. & Regnier, L.
Multiplicatives bis, draft, université Paris VII, 1988.

[3] Dunn, J.M.
Relevance logic and entailment, Handbook of philosphical
logic, vol I1I, ed Gabbay & Guenthner, D.Reidel 1986.

[4] Freyd, P. & Girard, J.Y. & Scedrov, A. & Scott, P. :
Semantic parametricity in typed A-calculus, proceedings
of the Congress "Logic in Computer Science 1988", to be
held in Edimburgh.

[6] Girard, J.Y. :
Une extension de l’interprétation fonctionnelle de Godel
& I'analyse et son application & 1'élimination des
coupures dans 1’analyse et la théorie des types, Proc.

Second Scand. Log Symp., ed. Fenstad, North Holland 1971.




TOWARDS A GEOMETRY OF INTERACTION 107

6] Girard, J.Y.
Proof- theory and Logical complexity, Bibliopolis, Napoli,
1987, ISBN 88-7088-123-7.

[7] Girard, J.Y.
Linear Logic, Theoretical Computer Science 50:1, 1987.

[8] Girard, J.Y. :
Multiplicatives, Rendiconti del seminario matematico
dell’universita e politecnico di Torino, special issue

on logic and computer science, 1988

[9] Girard, J.Y.
Quantifiers in linear logic, to appear in the Proceedings
of the SILFS conference, held in Cesena, January 1987.

[10] Girard, J.Y.
Typed A-calculus, in preparation for Cambridge Tracts in
Theoretical Computer Science.

[11] Girard, J.Y. & Lafont, Y.
Linear logic and lazy computation, Proceedings  of
TAPSOFT ’87, Pisa. SLNCS 250.

[12] Howard, W.A. :
The formulae-as-types notion of construction, in Curry
~ Volume, eds Hindley & Seldin, Academic Press, London 1980

[13] Ketonen, J. & Weyhrauch, R. :
A decidable fragment of predicate calculus, Theoretical
Computer Science 32:3, 1984,

[14] Lambek, J. :
The mathematics of sentence structure, Am. Math. Monthly
65, 1958.

[15] Lambek, J. & Scott, P.
Introduction to higher order categorical logic, Cambridge
University Press, Cambridge 1986



FH]

108 JEAN-YVES GIRARD

(16] Prawitz, D.
Natural Deduction, Almgvist & Wiksell, Stockholm 1965.

[17] Scott, D. :

Domains for denotational semantics, Proceedings of
ICALP ’82, SLNCS 140.

[18] Statman, R. :
Structural complexity of proofs, Ph. D., Stanford, 1975.

}équipe de Logique, UA 753 du CNRS
Mathématiques, t 45-55, 5° Etage
2 Place Jussieu, 75251 Paris Cedex 05




